Skip to main content
فهرست مقالات

توانایی ماشین بردار پشتیبان در پیش بینی درماندگی مالی

نویسنده:

علمی-پژوهشی (19 صفحه - از 177 تا 195)

درماندگی مالی پیش از ورشکستگی مالی رخ می‌دهد و پیش بینی موثر آن یک مسئله‌ی مهم و چالش برانگیز برای شرکت‌ها می‌باشد. تحقیق حاضر به پیش بینی درماندگی مالی در قالب مدل ماشین بردار پشتیبان و با استفاده از ترکیبات جریان نقد می‌پردازد. اهمیت ابزارهای داده کاوی، و توانایی این ابزارها در پیش بینی و طبقه بندی متغیرها، استفاده از آن‌ها را در مباحث مختلف مالی از جمله پیش بینی ورشکستگی، پیش بینی درماندگی مالی، کشف تقلب مدیریت، برآورد ریسک اعتباری و پیش بینی عملکرد شرکت، گسترش داده است. دراین مطالعه، ترکیبات جریان نقد شرکت‌های انتخاب شده برمبنای معیارهای اختصاصی درماندگی به عنوان متغیرهای ورودی مدل به کار گرفته شده است. یافته‌های تحقیق حاکی از آن است از میان توابع کرنلی، تابع چند جمله‌ای در سال درماندگی، یک و دو سال قبل از آن دارای بالاترین قدرت پیش بینی است.

Predicting financial distress، which normally happens before bankruptcy، is a challenging phenomenon and a crucial issue in all firms. The importance of data mining tools is well recognized، such that nowadays they are widely used in different financial issues such as، prediction of bankruptcy، financial distress، company's performance prediction، management fraud discovery and credit risk assessment. Using support vector machine and combinations of cash flow components، this research attempts to predict financial distress of companies. Combinations of cash flows، as input variables (data) of the model، are selected based on specific criteria of financial distress. Results reveal that among Kernel functions of the model، polynomial function has the most power of prediction in year of financial distress or one and two years prior to year of distress.

برای مشاهده محتوای مقاله لازم است وارد پایگاه شوید. در صورتی که عضو نیستید از قسمت عضویت اقدام فرمایید.